Nanometric Integrated Temperature and Thermal Sensors in CMOS-SOI Technology

نویسندگان

  • Maria Malits
  • Yael Nemirovsky
چکیده

This paper reviews and compares the thermal and noise characterization of CMOS (complementary metal-oxide-semiconductor) SOI (Silicon on insulator) transistors and lateral diodes used as temperature and thermal sensors. DC analysis of the measured sensors and the experimental results in a broad (300 K up to 550 K) temperature range are presented. It is shown that both sensors require small chip area, have low power consumption, and exhibit linearity and high sensitivity over the entire temperature range. However, the diode's sensitivity to temperature variations in CMOS-SOI technology is highly dependent on the diode's perimeter; hence, a careful calibration for each fabrication process is needed. In contrast, the short thermal time constant of the electrons in the transistor's channel enables measuring the instantaneous heating of the channel and to determine the local true temperature of the transistor. This allows accurate "on-line" temperature sensing while no additional calibration is needed. In addition, the noise measurements indicate that the diode's small area and perimeter causes a high 1/f noise in all measured bias currents. This is a severe drawback for the sensor accuracy when using the sensor as a thermal sensor; hence, CMOS-SOI transistors are a better choice for temperature sensing.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of low power cryogenic readout integrated circuits using fully-depleted- silicon-on-insulator CMOS technology for far-infrared image sensors

We are developing low power cryogenic readout integrated circuits (ROICs) for large format far-infrared image sensors using fully-depleted-silicon-on-insulator (FD-SOI) CMOS technology. We have evaluated the characteristics of MOS FETs fabricated by the FD-SOI CMOS technology and have found that both p-ch and n-ch FETs show good static performance below the liquid helium temperature, where n-ch...

متن کامل

A Real-Time Infrared Scene Simulator in CMOS/SOI MEMS

A 64 x 128 real-time infrared (RTIR) complementary metaloxide semiconductor (CMOS)/ silicon-on-insulator (SOI) scene generation integrated circuit (IC) is described. The RTIR IC offers real-time dynamic thermal scene generation. This system is a mixed-mode design, with analog scene information written and stored into a thermal pixel array. The design uses micro-electromechanical sensors (MEMS) ...

متن کامل

Thermal Flow Sensors for Harsh Environments

Flow sensing in hostile environments is of increasing interest for applications in the automotive, aerospace, and chemical and resource industries. There are thermal and non-thermal approaches for high-temperature flow measurement. Compared to their non-thermal counterparts, thermal flow sensors have recently attracted a great deal of interest due to the ease of fabrication, lack of moving part...

متن کامل

Thermal Modeling and Device Noise Properties of Three-Dimensional–SOI Technology

Thermal test structures and ring oscillators (ROs) are fabricated in 0.18-μm three-dimensional (3-D)–SOI technology. Measurements and electrothermal simulations show that thermal and parasitic effects due to 3-D packaging have a significant impact on circuit performance. A physical thermal model is parameterized to provide better prediction of circuit performance in 3-D technologies. Electrothe...

متن کامل

Building ultra-low-power high-temperature digital circuits in standard high-performance SOI technology

0038-1101/$ see front matter 2008 Elsevier Ltd. A doi:10.1016/j.sse.2008.06.045 * Corresponding author. Tel.: +32 10 47 8134; fax: E-mail addresses: [email protected] (D. Bo vain.be (R. Ambroise), [email protected] ( [email protected] (J.-D. Legat). For ultra-low-power applications, digital integrated circuits may operate at low frequency to reduce dynamic power consumption. At high ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2017